Theory of Computation

What is TOC?

In theoretical computer science, the theory of computation is the branch that deals with whether and how efficiently problems can be solved on a model of computation, using an algorithm. The field is divided into three major branches: automata theory, computability theory and computational complexity theory.

In order to perform a rigorous study of computation, computer scientists work with a mathematical abstraction of computers called a model of computation. There are several models in use, but the most commonly examined is the Turing machine. Automata theory

In theoretical computer science, automata theory is the study of abstract machines (or more appropriately, abstract 'mathematical' machines or systems) and the computational problems that can be solved using these machines. These abstract machines are called automata. This automaton consists of

· states (represented in the figure by circles),
· and transitions (represented by arrows).

As the automaton sees a symbol of input, it makes a transition (or jump) to another state, according to its transition function (which takes the current state and the recent symbol as its inputs).
Uses of Automata: compiler design and parsing.
[image:]

Introduction to formal proof:
Basic Symbols used :
U – Union
∩- Conjunction

· - Empty String Φ – NULL set 7- negation

‘ – compliment = > implies

UNIT-1

Theory of Computation
NBKRIST
DEPT OF CSE
What is TOC?

In theoretical computer science, the theory of computation is the branch that deals with whether and how efficiently problems can be solved on a model of computation, using an algorithm. The field is divided into three major branches: automata theory, computability theory and computational complexity theory.

In order to perform a rigorous study of computation, computer scientists work with a mathematical abstraction of computers called a model of computation. There are several models in use, but the most commonly examined is the Turing machine. Automata theory

In theoretical computer science, automata theory is the study of abstract machines (or more appropriately, abstract 'mathematical' machines or systems) and the computational problems that can be solved using these machines. These abstract machines are called automata. This automaton consists of

· states (represented in the figure by circles),
· and transitions (represented by arrows).

As the automaton sees a symbol of input, it makes a transition (or jump) to another state, according to its transition function (which takes the current state and the recent symbol as its inputs).
Uses of Automata: compiler design and parsing.
[image:]

Introduction to formal proof:
Basic Symbols used :
U – Union
∩- Conjunction

· - Empty String Φ – NULL set 7- negation

‘ – compliment = > implies

What is TOC?

In theoretical computer science, the theory of computation is the branch that deals with whether and how efficiently problems can be solved on a model of computation, using an algorithm. The field is divided into three major branches: automata theory, computability theory and computational complexity theory.

In order to perform a rigorous study of computation, computer scientists work with a mathematical abstraction of computers called a model of computation. There are several models in use, but the most commonly examined is the Turing machine. Automata theory

In theoretical computer science, automata theory is the study of abstract machines (or more appropriately, abstract 'mathematical' machines or systems) and the computational problems that can be solved using these machines. These abstract machines are called automata. This automaton consists of

· states (represented in the figure by circles),
· and transitions (represented by arrows).

As the automaton sees a symbol of input, it makes a transition (or jump) to another state, according to its transition function (which takes the current state and the recent symbol as its inputs).
Uses of Automata: compiler design and parsing.
[image:]

Introduction to formal proof:
Basic Symbols used :
U – Union
∩- Conjunction

· - Empty String Φ – NULL set 7- negation

‘ – compliment = > implies

Strings or Words over Alphabet :

A string or word over an alphabet [image:]is a finite sequence of concatenated symbols of [image:].
Example : 0110, 11, 001 are three strings over the binary alphabet { 0, 1 } .

aab, abcb, b, cc are four strings over the alphabet { a, b, c }.

It is not the case that a string over some alphabet should contain all the symbols from the alpha-bet. For example, the string cc over the alphabet { a, b, c } does not contain the symbols a and b. Hence, it is true that a string over an alphabet is also a string over any superset of that alphabet.

Length of a string :
The number of symbols in a string w is called its length, denoted by |w|.

Example : | 011 | = 4, |11| = 2, | b | = 1

Convention : We will use small case letters towards the beginning of the English alphabet to denote symbols of an alphabet and small case letters towards the end to

denote strings over an alphabet. That is,

are strings.

Some String Operations :

[image:] (symbols) and
[image:]

Let [image:]and [image:]be two strings. The concatenation of x and y

denoted by xy, is the string [image:]. That is, the concatenation of x and y denoted by xy is the string that has a copy of x followed by a copy of y without any intervening space between them.

Example : Consider the string 011 over the binary alphabet. All the prefixes, suffixes and substrings of this string are listed below.

Prefixes: , 0, 01, 011.

Suffixes: , 1, 11, 011.

Substrings: , 0, 1, 01, 11, 011.

Note that x is a prefix (suffix or substring) to x, for any string x and is a prefix (suffix or substring) to any string.

A string x is a proper prefix (suffix) of string y if x is a prefix (suffix) of y and x 蝤 y.

In the above example, all prefixes except 011 are proper prefixes.

Powers of Strings : For any string x and integer [image:], we use [image:]to denote the string formed by sequentially concatenating n copies of x. We can also give an inductive
definition of [image:]as follows:

xx= e, if n = 0 ; otherwise xx=x xx-1

[image:]Example : If x = 011, then [image:]= 011011011, [image:]= 011 and

Powers of Alphabets :

We write [image:](for some integer k) to denote the set of strings of length k with symbols from [image:]. In other words,

[image:]= { w | w is a string over

and

| w | = k}. Hence, for any alphabet,

[image:]denotes the set

of all strings of length zero. That is,

[image:]= { e }. For the binary alphabet { 0, 1 } we have

the following.
[image:]

The set of all strings over an alphabet [image:] is denoted by [image:]. That is,
[image:]

The set [image:] bols from

contains all the strings that can be generated by iteratively concatenating sym- [image:]any number of times.

Example : If [image:]= { a, b }, then [image:]= { , a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, …}.

Please note that if [image:], then [image:] that is [image:]. It may look odd that one can proceed from the empty set to a non-empty set by iterated concatenation. But there is a reason for this and we accept this convention
[image:]

The set of all nonempty strings over an alphabet [image:]is denoted by	. That is,
[image:]

Note that [image:]is infinite. It contains no infinite strings but strings of arbitrary lengths.

Reversal :

For any string

[image:]the reversal of the string is

[image:].

An inductive definition of reversal can be given as follows:
Languages :
A language over an alphabet is a set of strings over	that alphabet. Therefore, a
[image:][image:]

	language L is any subset of
	. That is, any
	is a language.

	Example :
	
	

	1.
	F is the empty language.
	
	

	2.
	is a language for any
	.
	

	3.
	{e} is a language for any
	. Note that,
	. Because the language F does not

[image:][image:][image:][image:]
contain any string but {e} contains one string of length zero.
4. The set of all strings over { 0, 1 } containing equal number of 0's and 1's.

5. The set of all strings over {a, b, c} that starts with a.

Convention : Capital letters A, B, C, L, etc. with or without subscripts are normally used to denote languages.

Set operations on languages : Since languages are set of strings we can apply set operations to languages. Here are some simple examples (though there is nothing new in it).

	Union : A string
	
	
	
	

	
	
	iff
	or
	

	Example : { 0, 11, 01, 011 }
	{ 1, 01, 110 } = { 0, 11, 01, 011, 111 }

	Intersection :
	A string,
	xϵ L1
	∩ L2
	iff x ϵ L1 and x ϵ L2 .

	Example : { 0, 11, 01, 011 }
	{ 1, 01, 110 } = { 01 }

[image:][image:][image:][image:][image:]

Complement : Usually, [image:]is the universe that a complement is taken with respect to.
[image:]

Thus for a language L, the complement is L(bar) =

{

| [image:]

}.

Example : Let L = { x | |x| is even }. Then its complement is the language

{

| |x| is

odd }.

Similarly we can define other usual set operations on languages like relative com-plement, symmetric difference, etc.

Reversal of a language :
The reversal of a language L, denoted as [image:], is defined as: [image:].

Example :
[image:]

	1. Let L = { 0, 11, 01, 011 }. Then
	= { 0, 11, 10, 110 }.

2. Let L = { [image:]

| n is an integer }. Then

[image:]= { [image:]

| n is an integer }.

Language concatenation :
[image:][image:]

= { xy |	and

The concatenation of languages

}.

[image:]and

[image:]is defined as

Example : { a, ab }{ b, ba } = { ab, aba, abb, abba }.

Note that ,
1. [image:] in general.
2. [image:]

3. [image:]

Iterated concatenation of languages : Since we can concatenate two languages, we also repeat this to concatenate any number of languages. Or we can concatenate a language with itself any number of times. The operation
[image:]

L with itself n times. This is defined formally as follows:
[image:][image:][image:]

Example : Let L = { a, ab }. Then according to the definition, we have
[image:]

and so on.
[image:]

Kleene's Star operation : The Kleene star operation on a language L, denoted as is defined as follows :
[image:][image:]

= (Union n in N)

= [image:]

= { x | x is the concatenation of zero or more strings from L }
[image:]Thus is the set of all strings derivable by any number of concatenations of strings in L. It is also useful to define
[image:][image:]

· , i.e., all strings derivable by one or more concatenations of strings in L. That is
[image:][image:]

= (Union n in N and n >0)
[image:]

=

Example : Let L = { a, ab }. Then we have,
[image:]

[image:]=

· {e} [image:]{a, ab} [image:]{aa, aab, aba, abab} [image:]…

[image:]=
[image:]

· {a, ab} [image:]{aa, aab, aba, abab} [image:]…
[image:]

	Note : is in
	, for every language L, including .

	The previously introduced definition of
	is an instance of Kleene star.

Finite Automation
(Generates)	(Recognizes)
Grammar [image:]Language [image:] Automata

Automata: A algorithm or program that automatically recognizes if a particular string belongs to the language or not, by checking the grammar of the string.

An automata is an abstract computing device (or machine). There are different varities of such abstract machines (also called models of computation) which can be defined mathematically.

Every Automaton fulfills the three basic requirements.

· Every automaton consists of some essential features as in real computers. It has a mech-anism for reading input. The input is assumed to be a sequence of symbols over a given alphabet and is placed on an input tape(or written on an input file). The simpler automata can only read the input one symbol at a time from left to right but not change. Powerful versions can both read (from left to right or right to left) and change the input.
· The automaton can produce output of some form. If the output in response to an input string is binary (say, accept or reject), then it is called an accepter. If it produces an out-put sequence in response to an input sequence, then it is called a transducer(or automaton with output).

· The automaton may have a temporary storage, consisting of an unlimited number of cells, each capable of holding a symbol from an alphabet (whcih may be different from the input alphabet). The automaton can both read and change the contents of the storage cells in the temporary storage. The accusing capability of this storage varies depending on the type of the storage.

· The most important feature of the automaton is its control unit, which can be in any one of a finite number of interval states at any point. It can change state in some de-fined manner determined by a transition function.

[image:]

Figure 1: The figure above shows a diagrammatic representation of a generic automa-tion.

Operation of the automation is defined as follows.

At any point of time the automaton is in some integral state and is reading a particular symbol from the input tape by using the mechanism for reading input. In the next time step the automa-ton then moves to some other integral (or remain in the same state) as defined by the transition function. The transition function is based on the current state, input symbol read, and the content of the temporary storage. At the same time the content of the storage may be changed and the input read may be modifed. The automation may also produce some output during this transition. The internal state, input and the content of storage at any point defines the configuration of the automaton at that point. The transition from one configuration to the next (as defined by the transition function) is called a move. Finite state machine or Finite Automation is the simplest type of abstract machine we consider. Any system that is at any point of time in one of a finite number of interval state and moves among these states in a defined manner in response to some input, can be modeled by a finite automaton. It doesnot have any temporary storage and hence a restricted model of computation.

Finite Automata

Automata (singular : automation) are a particularly simple, but useful, model of compu-tation. They were initially proposed as a simple model for the behavior of neurons.

States, Transitions and Finite-State Transition System :

Let us first give some intuitive idea about a state of a system and state transitions before describing finite automata.

Informally, a state of a system is an instantaneous description of that system which gives all relevant information necessary to determine how the system can evolve from that point on.

Transitions are changes of states that can occur spontaneously or in response to inputs to the states. Though transitions usually take time, we assume that state transitions are instantaneous (which is an abstraction).

Some examples of state transition systems are: digital systems, vending machines, etc. A system

containing only a finite number of states and transitions among them is called
a finite-state transition system.

Finite-state transition systems can be modeled abstractly by a mathematical model called finite automation

Deterministic Finite (-state) Automata

Informally, a DFA (Deterministic Finite State Automaton) is a simple machine that reads an in-put string -- one symbol at a time -- and then, after the input has been completely read, decides whether to accept or reject the input. As the symbols are read from the tape, the automaton can change its state, to reflect how it reacts to what it has seen so far. A machine for which a deter-ministic code can be formulated, and if there is only one unique way to formulate the code, then the machine is called deterministic finite automata.

Thus, a DFA conceptually consists of 3 parts:

1.	A tape to hold the input string. The tape is divided into a finite number of cells. Each
cell holds a symbol from [image:].

2. A tape head for reading symbols from the tape
3. A control , which itself consists of 3 things:

o finite number of states that the machine is allowed to be in (zero or more states are designated as accept or final states),

o a current state, initially set to a start state,

· [bookmark: page17]a state transition function for changing the current state.

An automaton processes a string on the tape by repeating the following actions until the tape head has traversed the entire string:

1. The tape head reads the current tape cell and sends the symbol s found there to the control. Then the tape head moves to the next cell.

2. he control takes s and the current state and consults the state transition function to get the next state, which becomes the new current state.

Once the entire string has been processed, the state in which the automation enters is examined.

If it is an accept state , the input string is accepted ; otherwise, the string is rejected . Summariz-

ing all the above we can formulate the following formal definition:

Deterministic Finite State Automaton : A Deterministic Finite State Automaton (DFA) is a 5-tuple :
[image:]

· Q is a finite set of states.
· [image:]is a finite set of input symbols or alphabet

	is the “next state” transition function (which is total). Intuitively,
function that tells which state to move to in response to an input, i.e., if M is in

is[image:]

a

state q and sees input a, it moves to state

[image:].

· [image:]is the start state.
· [image:]is the set of accept or final states.

Acceptance of Strings :

A DFA accepts a string

[image:]if there is a sequence of states

[image:]in

Q

such that

1. [image:]is the start state.
2. [image:]for all [image:].
[image:]

3.

Language Accepted or Recognized by a DFA :

The language accepted or recognized by a DFA M is the set of all strings accepted by M , and

is denoted by

[image:] i.e.[image:]

The

notion

of

acceptance can also be made more precise by extending the transition function

[image:].

Extended transition function :

[bookmark: page18]Extend [image:](which is function on symbols) to a function on strings, i.e. .
[image:]

That is, [image:] is the state the automation reaches when it starts from the state q and finish processing the string w. Formally, we can give an inductive definition as follows:

The language of the DFA M is the set of strings that can take the start state to one of the accepting states i.e.

L(M) = { [image:]| M accepts w }

= {[image:]| [image:]}

Example 1 :
[image:][image:]

[image:]is the start state
[image:][image:][image:]

It is a formal description of a DFA. But it is hard to comprehend. For ex. The language of the DFA is any string over { 0, 1} having at least one 1

We can describe the same DFA by transition table or state transition diagram as follow-ing:

Transition Table :
[image:]

0 [image:] 1
[image:][image:][image:][image:][image:][image:][image:][image:][image:][image:]

[bookmark: page19][image:][image:][image:][image:][image:][image:]

It is easy to comprehend the transition diagram.
[image:]

Explanation : We cannot reach find state [image:]w/0 or in the i/p string. There can be any no.
of 0's at the beginning. (The self-loop at [image:] on label 0 indicates it). Similarly there can be any no. of 0's & 1's in any order at the end of the string.

Transition table :

It is basically a tabular representation of the transition function that takes two arguments (a state and a symbol) and returns a value (the “next state”).

· Rows correspond to states,
· Columns correspond to input symbols,
· Entries correspond to next states
· The start state is marked with an arrow
· The accept states are marked with a star (*).
[image:]

0 [image:] 1
[image:]

(State) Transition diagram :

A state transition diagram or simply a transition diagram is a directed graph which can be constructed as follows:

1. For each state in Q there is a node.
2. There is a directed edge from node q to node p labeled a iff [image:] . (If there are several input symbols that cause a transition, the edge is labeled by the list of these symbols.)
3. There is an arrow with no source into the start state.
4. Accepting states are indicated by double circle.

[bookmark: page20][image:]

	
	
	5.
	

	6.
	Here is an informal description how a DFA operates. An input to a DFA can be any

	
	string.
	Put a pointer to the start state q. Read the input string w from left

	
	to right, one symbol at a time, moving the pointer according to the transition
	

	
	function,
	. If the next symbol of w is a and the pointer is on state p, move the

	
	pointer to
	. When the end of the input string w is encountered, the pointer is on

	
	some state, r. The string is said to be accepted by the DFA if
	and

	
	rejected if
	. Note that there is no formal mechanism for moving the pointer.

	7.
	A language
	is said to be regular if L = L(M) for some DFA M.
	

Non-Deterministic Finite Automata

Nondeterminism is an important abstraction in computer science. Importance of nondeterminism is found in the design of algorithms. For examples, there are many problems with efficient nondeterministic solutions but no known efficient deterministic solutions. (Travelling salesman, Hamiltonean cycle, clique, etc). Behaviour of a process is in a distributed system is also a good example of nondeterministic situation. Because
the behaviour of a process might depend on some messages from other processes that might arrive at arbitrary times with arbitrary contents.
It is easy to construct and comprehend an NFA than DFA for a given regular language. The concept of NFA can also be used in proving many theorems and results. Hence, it plays an important role in this subject.
In the context of FA nondeterminism can be incorporated naturally. That is, an NFA is defined in the same way as the DFA but with the following two exceptions:
· multiple next state.

· [image:]- transitions.

Multiple Next State :

· In contrast to a DFA, the next state is not necessarily uniquely determined by the current state and input symbol in case of an NFA. (Recall that, in a DFA there is exactly one start state and exactly one transition out of every state for each symbol in [image:]).
· This means that - in a state q and with input symbol a - there could be one, more

than one or zero next state to go, i.e. the value of [image:]is a subset of Q. Thus [image:]= [image:]which means that any one of [image:]could be the next state.

· The zero next state case is a special one giving [image:]=[image:], which means that there is no next state on input symbol when the automata is in state q. In such a case, we may think that the automata "hangs" and the input will be rejected.

[image:]- transitions :

In an -transition, the tape head doesn't do anything- it doesnot read and it doesnot move. However, the state of the automata can be changed - that is can go to zero, one

or more states. This is written formally as [image:]implying that the next

state could by any one of [image:]w/o consuming the next input symbol.
Formal definition of NFA :

Formally, an NFA is a quituple [image:]where Q, [image:], [image:], and F bear the same meaning as for a DFA, but [image:], the transition function is redefined as follows:
[image:]

where P(Q) is the power set of Q i.e. [image:].

The Langauge of an NFA :

From the discussion of the acceptance by an NFA, we can give the formal definition of a language accepted by an NFA as follows :

If [image:]is an NFA, then the langauge accepted by N is writtten as L(N) is

given by [image:].

That is, L(N) is the set of all strings w in [image:]such that [image:]contains at least one accepting state.
Removing ϵ-transition:

[image:]- transitions do not increase the power of an NFA . That is, any [image:]- NFA (NFA with [image:]transition), we can always construct an equivalent NFA without [image:]-transitions. The

equivalent NFA must keep track where the [image:]NFA goes at every step during computation. This can be done by adding extra transitions for removal of every [image:]- transitions from the [image:]- NFA as follows.

If we removed the [image:]- transition [image:]from the [image:]- NFA , then we need to moves

from state p to all the state [image:]on input symbol [image:]which are reachable from state q (in the [image:]- NFA) on same input symbol q. This will allow the modified NFA to move from state p to all states on some input symbols which were possible in case of [image:]-NFA on the same input symbol. This process is stated formally in the following theories.

Theorem if L is accepted by an [image:]- NFA N , then there is some equivalent [image:]without [image:]transitions accepting the same language L
Proof:

Let [image:]be the given [image:]with
[image:]

We construct

Where, [image:]for all [image:]and [image:]and
[image:]

Other elements of N' and N

We can show that [image:]i.e. N' and N are equivalent.

We need to prove that [image:]

[image:] i.e.
[image:]

We will show something more, that is,
[image:]

We will show something more, that is, [image:]

Basis : [image:], then [image:]

But [image:]by definition of [image:].

Induction hypothesis Let the statement hold for all [image:]with [image:].
[image:]

By definition of extension of [image:]

By inductions hypothesis.

Assuming that
[image:]

By definition of [image:]

Since [image:]

To complete the proof we consider the case

When [image:]i.e. [image:]then
[image:]and by the construction of [image:]wherever [image:]constrains a state in F.

If [image:](and thus [image:]is not in F), then [image:]with [image:]leads to an accepting state in N' iff it lead to an accepting state in N (by the construction of N' and N).

Also, if ([image:] , thus w is accepted by N' iff w is accepted by N (iff [image:])

If [image:](and, thus in M we load [image:]in F), thus [image:]is accepted by both N' and N .

Let [image:]. If w cannot lead to [image:]in N , then [image:]. (Since can add [image:]transitions to get an accept state). So there is no harm in making [image:]an accept state in N'.

Ex: Consider the following NFA with [image:]- transition.
[image:]

Transition Diagram [image:]
[image:][image:]

0	1
[image:]

Transition diagram for [image:]' for the equivalent NFA without [image:]- moves

[bookmark: page34][image:][image:]

0	1
[image:]

Since [image:]the start state q0 must be final state in the equivalent NFA .

Since [image:]and [image:]and [image:]we add moves [image:]and [image:]in the equivalent NFA . Other moves are also constructed accordingly.

[image:]-closures:

The concept used in the above construction can be made more formal by defining the [image:]-closure for a state (or a set of states). The idea of [image:]-closure is that, when moving

from a state p to a state q (or from a set of states Si to a set of states Sj) an input [image:], we need to take account of all [image:]-moves that could be made after the transition. Formally, for a given state q,
[image:]

[image:]-closures:

Similarly, for a given set [image:]

[image:]-closures:
[image:]

So, in the construction of equivalent NFA N' without [image:]-transition from any NFA with [image:]moves. the first rule can now be written as
[image:]

[bookmark: page35]Equivalence of NFA and DFA

It is worth noting that a DFA is a special type of NFA and hence the class of languages accepted by DFA s is a subset of the class of languages accepted by NFA s. Surprisingly, these two classes are in fact equal. NFA s appeared to have more power than DFA s because of generality enjoyed in terms of [image:]-transition and multiple next states. But they are no more powerful than DFA s in terms of the languages they accept.

Converting DFA to NFA

Theorem: Every DFA has as equivalent NFA

Proof: A DFA is just a special type of an NFA . In a DFA , the transition functions is

defined from [image:]whereas in case of an NFA it is defined from [image:]and

[image:]be a DFA . We construct an equivalent NFA [image:]as follows.
[image:]

i. e
[image:]

If [image:]and

All other elements of N are as in D.

If [image:]then there is a sequence of states [image:]such that
[image:]

Then it is clear from the above construction of N that there is a sequence of states (in N)

[image:]such that [image:]and [image:]and hence [image:]

Similarly we can show the converse.

Hence , [image:]

Given any NFA we need to construct as equivalent DFA i.e. the DFA need to simulate the behaviour of the NFA . For this, the DFA have to keep track of all the states where the NFA could be in at every step during processing a given input string.

[bookmark: page36]There are [image:]possible subsets of states for any NFA with n states. Every subset corresponds to one of the possibilities that the equivalent DFA must keep track of. Thus, the equivalent DFA will have [image:]states.

The formal constructions of an equivalent DFA for any NFA is given below. We first consider an NFA without [image:]transitions and then we incorporate the affects of [image:]transitions later.

Formal construction of an equivalent DFA for a given NFA without [image:]transitions.

Given an [image:]without [image:]- moves, we construct an equivalent DFA
[image:]

as follows
[image:]

[image:]i.e.
[image:][image:]

(i.e. every subset of Q which as an element in F is considered as a final stat
in DFA D)
[image:]

for all [image:]and [image:]

where [image:]

That is, [image:]

To show that this construction works we need to show that L(D)=L(N) i.e.
[image:]

Or,[image:]

We will prove the following which is a stranger statement thus required.

[bookmark: page37][image:]

Proof : We will show by inductions on [image:]

Basis If [image:]=0, then w =[image:]

So, [image:]by definition.

Inductions hypothesis : Assume inductively that the statement holds [image:]of length less than or equal to n.

Inductive step

Let [image:], then [image:]with [image:]

Now,
[image:]

Now, given any NFA with [image:]-transition, we can first construct an equivalent NFA without [image:]-transition and then use the above construction process to construct an equivalent DFA , thus, proving the equivalence of NFA s and DFA s..

It is also possible to construct an equivalent DFA directly from any given NFA with [image:]- transition by integrating the concept of [image:]-closure in the above construction.

Recall that, for any [image:]

[image:]- closure :
[image:]

[bookmark: page38]In the equivalent DFA , at every step, we need to modify the transition functions [image:]to keep track of all the states where the NFA can go on [image:]-transitions. This is done by
replacing [image:]by [image:]-closure [image:], i.e. we now compute [image:]at every step as follows:
[image:]

Besides this the initial state of the DFA D has to be modified to keep track of all the states that can be reached from the initial state of NFA on zero or more -transitions.
This can be done by changing the initial state [image:]to [image:]-closure ([image:]) .

It is clear that, at every step in the processing of an input string by the DFA D , it enters a state that corresponds to the subset of states that the NFA N could be in at that particular point. This has been proved in the constructions of an equivalent NFA for any
[image:]-NFA
If the number of states in the NFA is n , then there are [image:]states in the DFA . That is, each state in the DFA is a subset of state of the NFA .

But, it is important to note that most of these [image:]states are inaccessible from the start state and hence can be removed from the DFA without changing the accepted language. Thus, in fact, the number of states in the equivalent DFA would be much less than [image:].

Example : Consider the NFA given below.
[image:][image:][image:]

0	1
[image:][image:][image:][image:][image:][image:][image:][image:][image:][image:][image:][image:][image:][image:][image:]

{[image:]}
[image:][image:][image:][image:][image:][image:][image:][image:][image:]

Since there are 3 states in the NFA

[bookmark: page39]There will be [image:]states (representing all possible subset of states) in the equivalent DFA . The transition table of the DFA constructed by using the subset constructions process is produced here.
[image:][image:]

	0
	
	1
	The start state of the DFA is - closures

	
	
	
	

[image:][image:][image:][image:][image:][image:][image:][image:][image:]

[image:] The final states are all those subsets that contains [image:](since [image:][image:]in the NFA).
[image:]
	{ }
	Let us compute one entry,

	
	

[image:]

[image:][image:][image:][image:] Similarly, all other transitions can be computed
[image:]

0	1
[image:][image:][image:][image:][image:][image:][image:][image:]

Corresponding Transition fig. for DFA.Note that states

[image:]are not accessible and hence can be removed. This gives us the following simplified DFA with only 3 states.

[bookmark: page40][image:]

It is interesting to note that we can avoid encountering all those inaccessible or unnecessary states in the equivalent DFA by performing the following two steps inductively.

1. If [image:]is the start state of the NFA, then make [image:]- closure ([image:]) the start state of the equivalent DFA . This is definitely the only accessible state.

2. If we have already computed a set [image:]of states which are accessible. Then
[image:]. compute [image:]because these set of states will also be accessible.
image88.jpeg

image89.jpeg

image90.jpeg

image91.jpeg

image92.jpeg

image93.jpeg

image94.jpeg

image95.jpeg

image96.jpeg

image97.jpeg

image98.jpeg

image99.jpeg

image100.jpeg

image101.jpeg

image102.jpeg

image103.jpeg

image104.jpeg

image105.jpeg

image106.jpeg

image107.jpeg

image108.jpeg

image109.jpeg

image110.jpeg

image111.jpeg

image112.jpeg

image113.jpeg

image114.jpeg

image115.jpeg

image116.jpeg

image117.jpeg

image118.jpeg

image119.jpeg

image120.jpeg

image121.jpeg

image122.jpeg

image123.jpeg

image124.jpeg

image125.jpeg

image126.jpeg

image127.jpeg

image2.jpeg

image128.jpeg

image129.jpeg

image130.jpeg

image131.jpeg

image132.jpeg

image133.jpeg

image134.jpeg

image135.jpeg

image136.jpeg

image137.jpeg

image3.jpeg

image138.jpeg

image139.jpeg

image140.jpeg

image141.jpeg

image142.jpeg

image143.jpeg

image144.jpeg

image145.jpeg

image146.jpeg

image147.jpeg

image4.jpeg

image148.jpeg

image149.jpeg

image150.jpeg

image151.jpeg

image152.jpeg

image153.jpeg

image154.jpeg

image155.jpeg

image156.jpeg

image157.jpeg

image5.jpeg

image158.jpeg

image159.jpeg

image160.jpeg

image161.jpeg

image162.jpeg

image163.jpeg

image164.jpeg

image165.jpeg

image166.jpeg

image167.jpeg

image6.jpeg

image168.jpeg

image169.jpeg

image170.jpeg

image171.jpeg

image172.jpeg

image173.jpeg

image174.jpeg

image175.jpeg

image176.jpeg

image177.jpeg

image7.jpeg

image178.jpeg

image179.jpeg

image180.jpeg

image181.jpeg

image182.jpeg

image183.jpeg

image184.jpeg

image185.jpeg

image186.jpeg

image187.jpeg

image8.jpeg

image188.jpeg

image189.jpeg

image190.jpeg

image191.jpeg

image192.jpeg

image193.jpeg

image194.jpeg

image195.jpeg

image196.jpeg

image197.jpeg

image9.jpeg

image198.jpeg

image199.jpeg

image200.jpeg

image201.jpeg

image202.jpeg

image203.jpeg

image204.jpeg

image205.jpeg

image206.jpeg

image207.jpeg

image10.jpeg

image208.jpeg

image209.jpeg

image210.jpeg

image211.jpeg

image212.jpeg

image213.jpeg

image214.jpeg

image215.jpeg

image216.jpeg

image217.jpeg

image11.jpeg

image218.jpeg

image219.jpeg

image220.jpeg

image221.jpeg

image222.jpeg

image223.jpeg

image224.jpeg

image225.jpeg

image226.jpeg

image227.jpeg

image12.jpeg

image228.jpeg

image229.jpeg

image230.jpeg

image231.jpeg

image232.jpeg

image233.jpeg

image234.jpeg

image235.jpeg

image236.jpeg

image237.jpeg

image13.jpeg

image238.jpeg

image239.jpeg

image240.jpeg

image241.jpeg

image242.jpeg

image243.jpeg

image244.jpeg

image245.jpeg

image246.jpeg

image247.jpeg

image14.jpeg

image248.jpeg

image249.jpeg

image250.jpeg

image251.jpeg

image252.jpeg

image253.jpeg

image254.jpeg

image255.jpeg

image256.jpeg

image257.jpeg

image15.jpeg

image258.jpeg

image259.jpeg

image260.jpeg

image261.jpeg

image262.jpeg

image263.jpeg

image264.jpeg

image265.jpeg

image266.jpeg

image267.jpeg

image16.jpeg

image268.jpeg

image269.jpeg

image270.jpeg

image271.jpeg

image272.jpeg

image273.jpeg

image274.jpeg

image275.jpeg

image276.jpeg

image277.jpeg

image17.jpeg

image278.jpeg

image279.jpeg

image280.jpeg

image281.jpeg

image282.jpeg

image283.jpeg

image284.jpeg

image285.jpeg

image286.jpeg

image287.jpeg

image18.jpeg

image288.jpeg

image289.jpeg

image290.jpeg

image291.jpeg

image292.jpeg

image293.jpeg

image294.jpeg

image295.jpeg

image296.jpeg

image297.jpeg

image19.jpeg

image298.jpeg

image299.jpeg

image300.jpeg

image301.jpeg

image302.jpeg

image303.jpeg

image304.jpeg

image305.jpeg

image306.jpeg

image307.jpeg

image20.jpeg

image308.jpeg

image309.jpeg

image310.jpeg

image311.jpeg

image312.jpeg

image313.jpeg

image314.jpeg

image315.jpeg

image316.jpeg

image317.jpeg

image21.jpeg

image318.jpeg

image319.jpeg

image320.jpeg

image321.jpeg

image322.jpeg

image323.jpeg

image324.jpeg

image325.jpeg

image326.jpeg

image327.jpeg

image22.jpeg

image328.jpeg

image329.jpeg

image330.jpeg

image331.jpeg

image332.jpeg

image333.jpeg

image334.jpeg

image335.jpeg

image336.jpeg

image23.jpeg

image24.jpeg

image25.jpeg

image26.jpeg

image27.jpeg

image28.jpeg

image29.jpeg

image30.jpeg

image31.jpeg

image32.jpeg

image33.jpeg

image34.jpeg

image35.jpeg

image36.jpeg

image37.jpeg

image38.jpeg

image39.jpeg

image40.jpeg

image41.jpeg

image42.jpeg

image43.jpeg

image44.jpeg

image45.jpeg

image46.jpeg

image47.jpeg

image48.jpeg

image49.jpeg

image50.jpeg

image51.jpeg

image52.jpeg

image53.jpeg

image54.jpeg

image55.jpeg

image56.jpeg

image57.jpeg

image1.jpeg

image58.jpeg

image59.jpeg

image60.jpeg

image61.jpeg

image62.jpeg

image63.jpeg

image64.jpeg

image65.jpeg

image66.jpeg

image67.jpeg

image68.jpeg

image69.jpeg

image70.jpeg

image71.jpeg

image72.jpeg

image73.jpeg

image74.jpeg

image75.jpeg

image76.jpeg

image77.jpeg

image78.jpeg

image79.jpeg

image80.jpeg

image81.jpeg

image82.jpeg

image83.jpeg

image84.jpeg

image85.jpeg

image86.jpeg

image87.jpeg

